
NCS 362: Embedded Systems

Embedded Systems

• Software Engineering.

• C Programming

Assignment no. 3

kindly read the following paper [Software Engineering for Space Exploration].

In short, one paper only (2 pages), write an essay mention your opinion

about the topic.

Notes:

• you will deliver your report on Monday (at lecture time).

• you can work in a group but the group is only two students.

• you may need to read more - paper references or external resources.

• at lecture time, there will be a discussion regarding the topic, be ready

to present the topic and discuss it.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.7111&rep=rep1&type=pdf

Introduction to C Programming

• Compiler is system software converts a high-level language program

(human readable format) into object code (machine readable format).

gcc, visual studio.

• Assembler is system software converts an assembly language program

(human readable format) into object code (machine readable format).

• Linker builds software system by connecting (linking) software

components.

• Loader places the object code in memory. In an embedded system, the

loader programs object code into flash ROM.

• Debugger is a set of hardware and software tools we use to verify system is

operating correctly. The two important aspects of a good debugger are

control and observability.

C code (z = x+y;) →

Assembly code (ADD R2,R1,R0) →

Machine code (0xEB010200)

Introduction to C Programming – What?

• C is a general-purpose programming language initially developed by

Dennis Ritchie between 1969 and 1973 while at AT&T Bell Labs.

• In most programming languages the column position and line number

affect the meaning. On the contrary, C is a free field language. Except for

preprocessor lines (that begin with #), spaces, tabs and line breaks have the

same meaning.

• C was invented to write an operating system - UNIX.

• C is a successor of B language.

• The language was formalized in 1988 by the American National Standard

Institute (ANSI).

• Today's most popular Linux OS and RDBMS MySQL have been written in

C.

Introduction to C Programming – Why ?

• Why C language ?

o last ten years, ranked one or two - high-level languages.

(popular)

o C is the most common language for embedded systems.

It is not tied to any particular hardware or system.

o C is efficient programing language.

o C is high/mid level language.

Introduction to C Programming – Why ?

• Why C language ?

Introduction to C Programming – Why ?

➢ C is much more flexible than other high-level programming languages:

• C is a structured language.

• C is a relatively small language.

• C has very loose data typing.

• C easily supports low-level bit-wise data manipulation.

• C is sometimes referred to as a “high-level assembly language”.

➢When compared to assembly language programming:

• Code written in C can be more reliable.

• Code written in C can be more scalable.

• Code written in C can be more portable between different platforms.

• Code written in C can be easier to maintain.

• Code written in C can be more productive.

Embedded C Programming !

Main characteristics of an Embedded programming environment:

➢ Limited ROM.

➢ Limited RAM.

➢ Limited stack space.

➢ Hardware oriented programming.

➢ Critical timing (Interrupt Service Routines, tasks, …).

➢Many different pointer kinds (far / near / rom / uni / paged / …).

➢ Special keywords and tokens (@, interrupt, tiny, …).

Introduction to C Programming – How ?

• Variables and Data Types.

• Operators and Hardware Manipulation.

• Program Flow Control.

• Advanced Types, Constants and Expressions.

• Arrays and Pointer Basics.

• Functions.

• Structures and Unions.

• Arrays of Pointers.

• Declarations.

• Preprocessor.

Introduction to C Programming– Program

• C Program is divided into four sections.

• Every C program has a main, and execution begins at the top of this main.

//**** 0. Documentation Section

// This program calculates the area of square shaped rooms

// Author: Ramesh Yerraballi & Jon Valvano

// Date: 6/28/2013

//

// 1. Pre-processor Directives Section

#include <stdio.h> // Diamond braces for sys lib: Standard I/O

#include "uart.h" // Quotes for user lib: UART lib

#define SIZE 10 // SIZE is found as a token, it is replaced with the 10

// 2. Global Declarations section

// 3. Subroutines Section

// MAIN: Mandatory routine for a C program to be executable

int main(void) {

UART_Init(); // call subroutine to initialize the uart

printf("This program calculates areas of square-shaped rooms\n");

}

Introduction to C Programming – Keywords

Standard ANSI C recognizes the following keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

__asm Specify a function is written in assembly code

C Programming / Basic Syntax

• A C program consists of various tokens and a token is either a keyword,

an identifier, a constant, a string literal, or a symbol.

• Comments are like helping text in your C program and they are ignored

by the compiler. /* This is a comment */

• A C identifier is a name used to identify a variable, function, or any

other user-defined item.

• A C identifier starts with a letter A to Z, a to z, or an underscore '_'

followed by zero or more letters, underscores, and digits (0 to 9).

• C does not allow punctuation characters such as @, $, and % within

identifiers.

• C is a case-sensitive programming language.

C Programming / Punctuation

• Punctuation marks (semicolons, colons, commas, apostrophes, quotation

marks, braces, brackets, and parentheses)

Punctuation Meaning

; End of statement

: Defines a label

, Separates elements of a list

() Start and end of a parameter list

{ } Start and stop of a compound statement

[] Start and stop of a array index

" " Start and stop of a string

' ' Start and stop of a character constant

C Programming / Storage Classes

• A storage class defines the scope (visibility) and life-time of

variables and/or functions within a C.

Storage

Class
Description

auto
auto storage class is the default storage class for all local

variables.

register
register storage class is used to define local variables that

should be stored in a register instead of RAM

static

static storage class instructs the compiler to keep a local

variable in existence during the life-time of the program instead

of creating and destroying it each time it comes into and goes

out of scope.

extern
extern storage class is used to give a reference of a global

variable that is visible to ALL the program files.

C Programming / Variables and Expressions

• Local variables contain temporary information that is accessible only

within a narrow scope.

• In C, local variable must be declared immediately after a brace { that

begins a compound statement. Unlike globals, which are said to be static,

locals are created dynamically when their block is entered, and they cease

to exist when control leaves the block.

• Although two global variables cannot use the same name, a local variable

of one block can use the same name as a local variable in another block.

• Constants refer to fixed values that the program may not alter during its

execution.

• Constants can be of any of the basic data types like an integer constant.

• Void represents the absence of type.

C Programming / Variables and Expressions

Data type Precision Range
unsigned char 8-bit unsigned 0 to +255

signed char 8-bit signed -128 to +127

unsigned int compiler-dependent – 16 or 32 bits

int compiler-dependent– 16 or 32 bits

unsigned short 16-bit unsigned 0 to +65535

short 16-bit signed -32768 to +32767

unsigned long unsigned 32-bit 0 to 4294967295L

long signed 32-bit -2147483648L to

2147483647L

C Programming / Variables and Expressions

int main(void) {

unsigned long side; // room wall meters

unsigned long area; // size squared meters

UART_Init(); // call subroutine to initialize the uart

side = 3;

area = side*side;

printf("\nArea of the room with side of %ld m is %ld sqr

m\n",side,area);

}

C Programming / Operators

➢ An operator is a symbol that tells the compiler to perform specific

mathematical or logical functions.

➢ C language is rich in built-in operators and provides the following types of

operators :

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Misc Operators

C Programming / Arithmetic Operators

Embedded Systems

Operation Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

%
Modulus Operator and remainder of after an integer

division.

B % A = 0

++ Increment operator increases the integer value by one. A++ = 11

-- Decrement operator decreases the integer value by one. A-- = 9

Given that A holds 10 and B holds 20

C Programming / Relational Operators
Operation Description Example

==
Checks if the values of two operands are equal. If yes, then the

condition becomes true.

(A == B) is not

true.

!=
Checks if the values of two operands are not equal. If the values

are not equal, then the condition becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than the value of

right operand. If yes, then the condition becomes true.

(A > B) is not

true.

<
Checks if the value of left operand is less than the value of right

operand. If yes, then the condition becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than or equal to the

value of right operand. If yes, then the condition becomes true.

(A >= B) is not

true.

<=
Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

(A <= B) is

true.

Given that A holds 10 and B holds 20

C Programming / Logical Operators

Embedded Systems

Operation Description Example

&&

Called Logical AND operator. If both the

operands are non-zero, then the condition

becomes true.

(A && B) is true.

||

Called Logical OR Operator. If any of the two

operands is non-zero, then the condition

becomes true.

(A || B) is true.

!

Called Logical NOT Operator. It is used to

reverse the logical state of its operand. If a

condition is true, then Logical NOT operator

will make it false.

!(A && B) is

false.

Given that A holds 10 and B holds 20

C Programming / Bitwise Operators

Operation Description Example

&
Binary AND Operator copies a bit to the result if it exists in

both operands.

(A & B) = 12,

i.e., 0000 1100

| Binary OR Operator copies a bit if it exists in either operand. (A | B) = 61,

i.e., 0011 1101

^
Binary XOR Operator copies the bit if it is set in one operand

but not both.

(A ^ B) = 49,

i.e., 0011 0001

~
Binary Ones Complement Operator is unary and has the effect

of 'flipping' bits.

(~A) = -61,

i.e., 1100 0011

<<
Binary Left Shift Operator. The left operands value is moved

left by the number of bits specified by the right operand.

A << 2 = 240

i.e., 1111 0000

>>
Binary Right Shift Operator. The left operands value is moved

right by the number of bits specified by the right operand.

A >> 2 = 15

i.e., 0000 1111

Given that A = 0011_1100 (60) and B = 0000_1101(13)

C Programming / Assignment Operators

Operation Description Example

=
Simple assignment operator. Assigns values from right side

operands to left side operand

C = A + B assigns the

value of A + B to C

+=
Add AND assignment operator. It adds the right operand to

the left operand and assign the result to the left operand.

C += A is equivalent to

C = C + A

-=

Subtract AND assignment operator. It subtracts the right

operand from the left operand and assigns the result to the

left operand.

C -= A is equivalent to

C = C - A

*=

Multiply AND assignment operator. It multiplies the right

operand with the left operand and assigns the result to the

left operand.

C *= A is equivalent to

C = C * A

/=

Divide AND assignment operator. It divides the left operand

with the right operand and assigns the result to the left

operand.

C /= A is equivalent to

C = C / A

%=
Modulus AND assignment operator. It takes modulus using

two operands and assigns the result to the left operand.

C %= A is equivalent to

C = C % A

C Programming / Assignment Operators

Operation Description Example

<<= Left shift AND assignment operator.
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator.
C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator.
C &= 2 is same as

C = C & 2

^= Bitwise exclusive OR and assignment operator.
C ^= 2 is same as

C = C ^ 2

|= Bitwise inclusive OR and assignment operator.
C |= 2 is same as

C = C | 2

C Programming / Misc Operators

Operation Description Example

sizeof() Returns the size of a variable. Sizeof (a),

where a is integer, will return 4.

& Returns the address of a variable. &a; returns the actual address of the

variable.

* Pointer to a variable. *a;

? : Conditional Expression. If Condition is true ? then value X :

otherwise value Y

C Programming / Precedence - Priority
Precedence Operators Associativity

highest () [] . -> ++(postfix) --(prefix) left to right

++(prefix) --(prefix) !~ sizeof (type) +(unary) -

(unary) &(address) *(dereference)
right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

? : right to left

= += -= *= /= %= <<= >>= |= &= ^= right to left

lowest , left to right

C Programming / Operators

void main(void)

{

long x,y,z;

x=1; y=2;

z = x+4*y;

x++;

y--;

x = y<<2;

z = y>>2;

y += 2;

}

What is the value of x, y and z ?

C Programming / Operators

void main(void)

{

long x,y,z; // Three local variables

x=1; y=2; // set the values of x and y

z = x+4*y; // arithmetic operation z = 1+8 = 9

x++; // same as x=x+1; x = 2

y--; // same as y=y-1; y = 1

x = y<<2; // left shift same as x=4*y; x = 4

z = y>>2; // right shift same as x=y/4; y = 1

y += 2; // same as y=y+2; y =3

}

